

K. George Beck Professor of Weed Science Dept Biog Ag Sciences & Pest Mgmt Colorado State University

Weed Management Strategies

- · Prevention:
 - Active steps to avoid occurrence
- · Eradication:
 - Elimination from an area
- · Control:
 - Decrease population below critical threshold

Integrated Pest Management

- Use combination of control methods
 - Reduce population of pest organisms below biological & economic threshold
 - Minimize pesticide use
 - · Not necessarily eliminate use
 - Optimize crop yield and return to producer
- Integrated Weed Management
 - IPM applied to invasive weeds

References

- Sheley, R.L., T.J. Svejcar, & B.D. Maxwell. 1996. A theoretical framework for developing successional weed management strategies on rangeland. Weed Technology 10:766-773
- Sheley, R.L., S. Kedzie-Webb, & B.D. Maxwell.
 Integrated weed management on rangeland. in R.L.
 Sheley & J.K. Petroff, eds. Biology & Management of Noxious Rangeland Weeds p 57-68

Ecologically Based Weed Management

- Develop strategies based upon current understanding of succession
 - Recognizes plant communities dynamic
 - Use technology to enhance natural processes & mechanisms that regulate vegetation change
 - Direct weed infested communities on trajectory to more desirable community

Causes of Succession

- · Site availability
- · Differential species availability
- · Differential species performance

 Successional weed management exploits these causes

Successional Weed Management Components

· Mgmt component:

- Designed disturbance
- Controlled colonization
- Controlled species performance

· Succession cause:

- Site availability
- Differential species availability
- Differential species performance

Ecological Opportunities for Weed Management

Successional Weed Mgmt: Treatment Examples

Designed
Disturbance

Bdlf herbicide

Cultivation

Non-selective

herbicide

Flooding & draining

Grazing

Burning

Controlled Colonization

Biocontrol

Mowing

Seeding

Fertilization

Grazing

Selective herbicide

Burning

Prevent wd intros

Controlled spp Performance

Biocontrol

Mowing

Early spr grazing

Fertilization

Sheep grazing

Selective herbicide

Reduce soil fert.

Irrigation

Some Examples

- · CSU Weed Science research:
 - Canada thistle mowing plus herbicide studies
 - Weed Technology 14:351-356; 2000
 - Russian knapweed control with herbicides, minimum tillage, no tillage and seeding
 - Leafy spurge management with flea beetles and sheep grazing
- · MSU models
 - Chap 5 Biology & Mgmt Noxious Rangeland Weeds

Canada Thistle

Kersey

CT 237 shoots/m² 47% cover Grass 0% cover Rush 8% cover

Year 1

Mow 3 times + Curtail 2 qt/A Year 2

Mow 3 times + Curtail 2 qt/A

<u>Brighton</u>

CT 39 shoots/m² 42% cover Grass 6% cover Designed disturbance

Controlled colonization

Controlled spp performance

Kersey

CT 6 shoots/m² 8% cover Grass 31% cover Rush 54% cover

Brighton

CT 80 shoots/m² 43% cover Grass 36% cover

Weed Management Herbicide Component

- Pasture & rangeland weed management
 "born" in cattle production
 - Grasses favored
- · Many think if a herbicide is used to decrease weed abundance
 - Select for grass species
 - Eliminate forbs & shrubs

Russian Knapweed Control & Native Forb & Shrub Establishment

- · Experiment established May, 2009
 - Strip-strip plot four replications; P=0.05
 - · 4 herbicide treatments
 - Aminocyclopyrachlor at 0.5, 1.0 & 2.0 oz ai/A
 - Untreated control
 - · 16 native seeded species
 - 10 forbs
 - 4 shrubs
 - 2 cool season perennial grasses
 - Herbicides applied May 14, 2009
 - Native species seeded April 2010

Penstemon spp.

Russian Knapweed Control & Native Forb Establishment

RK control: 0.5 oz ai=31%; 1 oz ai=38%; 2 oz ai=87%; untrt=0%

Louisiana sage

Fourwing saltbush; Atriplex canescens

Winterfat; Krascheninnikovia lanata

Russian Knapweed Control & Native Shrub Establishment

RK control: 0.5 oz ai=31%; 1 oz ai=38%; 2 oz ai=87%; untrt=0%

RK Control & Native Forb & Shrub Establishment Summary

- · Species richness:
 - untreated controls:
 - · Forbs 8%; shrubs 0%, grasses 50%
- · Aminocyclopyrachlor 2.0 oz ai/A
 - Best Russian knapweed control
 - Forbs 93%; shrubs 88%; grasses 100%

Designed Disturbance

+

Controlled Colonization

+

Controlled Species
Performance

Leafy Spurge Grazing Research

- Varied sheep stocking intensity:
 - Four sheep stocking rates
 - · 2, 4, 6, or 8 sheep per acre
 - Three grazing durations
 - · 10, 20, or 30 days
- · With or without flea beetles
 - Flea beetles released at one end of plot
 - 500
- Experimental controls
 - No sheep grazing
 - With and without flea beetles

Leafy Spurge Grazing Research <u>Summary</u>

- · 6 to 8 sheep/A graze 10 days for 5 yr
 - Decreased leafy density 83-94%
- 8 sheep/A graze 10 days for 5 yr plus flea beetles
 - Decreased leafy spurge density to zero!
 - · 81% from sheep
 - · 19% from flea beetles

Leafy Spurge Density Sheep Grazing + Flea Beetle Herbivory

Smooth Brome Cover Sheep Grazing + Flea Beetle Herbivory

Leafy Spurge Mgmt Sheep + Flea Beetles

- · What successional weed management components were used?
 - Designed disturbance
 - · Sheep grazing
 - Controlled colonization
 - · Flea beetles and sheep
 - Controlled species performance
 - · Suppressed LS and favored smooth brome

How Manage Weeds?

- Develop a comprehensive, successional weed management plan
- · Implement the plan

Comprehensive Weed Management Program Includes

- · Detailed map of weed infestations
- Develop successional weed mgmt strategy
 - recognize current status of plant community & what is desired state
- · Evaluation of results
- · Good, detailed record keeping

Objective of Weed Management

- Manage weeds so that intended land
 use can be achieved
- · Intended land use & habitat will help determine
 - how aggressive to make weed mgmt program
 - weed control methods
 - what successional strategies to exploit

Comprehensive Weed Mgmt Programs Include

- · Map weed infestation
 - type/size
 - weed species & desirable plants
 - habitat
 - water
- · Productive or estimated land value

Comprehensive Weed Management Program

- · Be systematic in attack!!
 - start on perimeter infestations
 - · easier to control
 - · costs less to control
 - regain use of that land return on investment
 - · prevents large infestations from small ones

Successful Weed Management

· Persistence!!!

Comprehensive Weed Management Summary:

- · Map infestations
 - type/size
 - weed & desirable plants present
 - productive land value
 - habitat & water
- Develop successional mgmt strategy
- Systematic attack
- · Evaluate results & keep records

